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COUPLED HEAT TRANSFER AND VISCOUS FLOW, AND 
MAGNETIC EFFECTS IN WELD POOL ANALYSIS 

R. McLAY AND G. F. CAREY 
The University of Texas at Austin, Austin, TX 78712, U. S. A 

SUMMARY 
A finite element formulation and analysis is developed to study coupled heat transfer and viscous flow in a 
weld pool. The thermal effects generate not only buoyancy forces but also a variation in the surface tension 
which acts to drive the viscous flow in the molten weld pool. A moving phase boundary separates molten 
and solid material. Numerical experiments reveal the nature of the highly convective flow in the weld pool 
and the associated thermal profiles. The relative importance of buoyancy, surface tension, phase change, 
convection, etc. are examined. We also consider the sensitivity of the solution to the finite element mesh and 
related non-linear numerical instabilities. Of particular interest is the coupling of the thermal and viscous 
flow fields for the case when radial flow is inward or outward. 
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INTRODUCTION 

A detailed knowledge of the temperature field and thermally induced flow in a weld pool is 
important in understanding the phenomena and in development of improved welding techniques. 
Experimental measurements of the temperature and flow velocity are difficult even for surface 
flow description. In fact, introduction of materials for surface flow visualization into the weld pool 
has been observed in some instances to radically alter the flow pattern. Mathematical analysis 
and numerical simulation offer the possibility of avoiding such difficulties to provide a better 
qualitative and quantitative description of the coupled solution behaviour. Moreover, one can 
conduct parametric studies to assess the importance of the effects that influence the weld pool 
shape and hence improve the weld process. 

Consider a molten weld pool resulting from an applied surface temperature or heat flux 
(Figure 1). The thermal gradients induce buoyancy forces in the weld pool which, together 
with surface tension, tend to cause fluid flow. Experimental studies indicate that for many 
welding problems the convective flow can be adequately modelled as a Newtonian fluid. The 
effect of buoyancy can be included as a distributed body force depending on temperature by 
means of the well known Boussinesq approximation.'* 

Surface tension is known to vary with temperature and hence produces an additional thermally 
induced surface shear force (the Marangoni effect) during the flow (see e.g. References 3 and 4). 
Depending on the welding conditions and presence of impurities, the resulting shear force may be 
inwardly or outwardly directed. The exact nature of this process is not yet fully understood.' The 
velocity of the flow in the pool is sufficiently large that non-linear effects are significant. The 
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Weld Pool '4 Solid Steel I I \ '  

Figure 1. Sketch of the TIG welding system 

strength and direction of the convective flow field will, in turn, influence the temperature field of 
the weld pool. 

The problem is further complicated by the presence of a moving phase boundary between 
molten and solid material. Since the location of this phase boundary is not known a priori, this 
introduces an additional non-linearity to the The influence of the convective flow on 
the temperature field in the weld pool will, in turn, affect the melt surface and hence the shape of 
the weld (see Reference 8 for a related physical problem, electron beam vaporization). Finally, in 
tungsten-inert gas (TIG) welding, electromagnetic effects generate body forces in the flow which 
may be significant in some situations (e.g. at high currents). 

The problem may also be viewed as part of a larger problem when coupled to the heat transfer 
and flow in the plasma above the pool surface. This aspect is not considered here, and we assume 
that the surface temperature or heat flux is known (e.g. from experimental data). 

In the present study we develop an integral statement and Galerkin finite element formulation 
of the coupled heat transfer and viscous flow problem including buoyancy, surface tension and 
the moving phase boundary. (For further discussion of finite elements for fluid flow and heat 
transfer, see e.g. References 9-14.) By means of detailed calculations using a fine mesh on a 
CRAY-XMP supercomputer, we seek to determine the detailed structure of the flow and 
temperature fields, including such features as primary and secondary circulations and layers. 
Such a precise description has not previously been obtained. Some exploratory finite difference 
studies are given in Reference 15. The effect of inward and outward driven flows on the size of the 
circulation patterns and the layer structure is of special interest, since this has a strong bearing on 
the shape of the weld pool. 

GOVERNING EQUATIONS 

The transfer of heat in the weld pool is governed by 

aT 
PC - + + p c , u . V T - V * ( k V T )  = 0, 

p at 

where cp is the heat capacity, k is the thermal conductivity, T is the temperature and u is the 
velocity of the viscous flow. At the free surface the temperature distribution or heat flux is 
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prescribed; e.g. for an axisymmetric pool T = T(r, 0, t )  or q(t )  = - k(dT/az) (r ,  0, t )  are given, 
where r is the radial co-ordinate and z = 0 is the free surface (Figure 1). Since the problem is 
axisymmetric, we can consider the right quadrant alone with symmetry enforced on the vertical 
axis: 

aT 
- = 0  o n r = 0 .  
ar 

The phase boundary moves with normal velocity V satisfying the Stefan condition 

together with 
(3) 

(4) 
on the phase boundary, where L is the latent heRt coefficient for phase change of the material, 
T,,,, is the melting temperature and the notation I[-] denotes the flux jump. 

This heat transfer problem is coupled to the viscous flow in the weld pool. Experimental studies 
have shown that, for the welding problems of interest, the surface flow velocities may reach 
magnitudes of order 1 m s-  '. For the length scale and viscosity of the weld pools considered, this 
implies a flow Reynolds number Re of order 1O00. Thus the assumption of linear Stokes flow is 
not applicable, and we use the Navier-Stokes equations for viscous flow of an incompressible 
fluid. Introducing the well known Boussinesq approximation, the viscous flow equations are 

aU 1 
- + u * V u - v VU + - Vp = - /?( T - T0)g + f,,, , 
at P 

( 5 )  

v * u =  0, (6) 
where u is the velocity, p is the pressure, T is the temperature, To is a reference temperature (at 
which buoyancy forces are zero), v is the viscosity, p is the density, /? is the coefficient of thermal 
expansion of the fluid, g = -gi, is the vertical force due to gravity, and f, is the magnetic force 
J x pmH for a field of magnetic intensity H due to current J. 

There is 'no slip' at  the melt boundary (since there is no volume change during melting), hence 

u = O  onaR,; (7) 

u r = O  on r =0, (8) 

and from symmetry there is no flow normal to the axis: 

where u, is the radial velocity component. The applied temperature field induces a surface tension 
equivalent to the application of shear stress at the horizontal free surface: 

where y ( T )  is the interfacial tension and is known from experiment. 
The quasi-static Maxwell equations are introduced to determine the magnetic field. If the 

magnetic permeability p,,, is assumed constant and the electric current density vector has non- 
zero components in the r- and z-direction (implying that H, and H ,  are zero), then the magnetic 
field intensity H = H,i, satisfies 

where 0 is the electrical conductivity. 
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Recall that J = V x H so that, using Stokes theorem, 

H.ds= J - n d A .  4 I 
Hence the associated boundary conditions for the magnetic field can be obtained from boundary 
conditions on J. In particular, zero radial current flow at the centre line applies from symmetry 
and there is no current flow through the bottom of the slab. That is, 

J ,  = 0 at r = 0, J , = O  at z = -d. (12) 

At the top surface the arc is assumed to provide a current profile in the form of a truncated 
Gaussian distribution for r < R. That is, at z = 0 

where I is the total current input and r, is the standard deviation for the arc distribution. On the 
boundary side r = R the current density is uniform with 

I 
J ,  = - 2nrd ' 

Using (12H14) in ( 1  1) yields the desired boundary conditions for H. Specifically, 

The above equations, together with intial data for u, T and H,,  constitute the mathematical 
statement of the problem. 

INTEGRAL FORMULATION AND FINITE ELEMENT APPROXIMATION 

A variational form for the coupled problem on a fixed domain can be constructed by introducing 
weighted residual projections for the governing partial differential equations and applying the 
divergence theorem in the standard Then, for the coupled problem on a fixed 
domain, we have the weak statement: the solution (u, p, T, H,) satisfies 

= Jn { - / ? ( T -  T , ) g * v + f ; v } d x ,  

l n q V * u  dx = 0, 

In( p c p g  w + pc,u.V Tw + k V T * V w  dx = 0 ) 
and 
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for all admissible test functions v, q, w and 1. Here Vu:Vv is the dyadic product symbolic 
representation for 

and v, w and 1 vanish on those parts of the boundary where u, T and H+ respectively are specified 
as essential data. If the normal heat flux Q is specified on a Q ,  then we have the additional 
boundary integral Jan, Qwds on the right in (18). Introducing a finite element discretization and 
basis yields the semidiscrete coupled finite element system to be integrated in time. 

A corresponding variational statement for the moving boundary problem can be constructed 
directly as a variational inequality. However, the variational inequality formulation has generally 
proven most useful in deriving error estimates for problems with constraints and proving 
convergence, rather than developing algorithms.". l9 Here we are concerned with the approxi- 
mate formulation and numerical treatment, including the moving boundary, so we turn now to 
this issue. 

A direct approach is to uncouple the phase boundary motion from the flow and transport 
equations in a time step At. The method is most easily described for the one-phase Stefan problem 
in one dimension. Then (3) becomes 

aT 
- k - = L V  ax 

or 

Let s ( t )  denote the position of the phase boundary. Since V = ds/dt, integrating (20) numerically 
with respect to time through time step At, the forward Euler scheme implies (Figure 2) 

k dT 
~ ( t  + At) = ~ ( t )  - - - ( ~ ( t ) ,  t )  At, 

L ax 

where the flux has been approximated as constant through the step. 
This strategy can be extended immediately to higher dimensions. The problem now is to solve 

the associated heat transfer and viscous flow equations through the time step At and including the 
influence of the domain change. An analysis of a scheme based on this technique for advancing 
the front in the model heat conduction equation has been developed demonstrating convergence. 
The forward Euler method is used to integrate in time on the current subdomain and extrapol- 
ation used over the incremental domain extension. This scheme offers low accuracy but does 

( 6  (C+AC) ,C +A/) 

siopoV&W) 

T ! p ' I .  

-* b ( C ) . / )  d/ 

T melt 
L* 

Figure 2. Movement of 1D phase boundary through a time step Ar 
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confirm that such strategies are viable for this class of problems. Higher-order predictor- 
corrector schemes for advancing the phase boundary can be formulated. 

A more important issue is the problem of accurately solving the coupled flow and transport 
equations on the evolving domain. Transformation techniques may be introduced for adjusting 
the domain map and including the effect in the transformed governing equations. Both regular 
and space-time finite element approaches may be developed. Here we present one such method. 
This approach is a simplified approximation of the transformation procedure underlying moving 
finite element techniques.”, l6 

Introducing the transformation x = x(& z), t = t, the time derivative in (1) transforms as 

where U is the transformation velocity. Thus we see that the effect of the transformation velocity 
enters as a convective adjustment U - V T  to the governing equations. A similar expression applies 
for au/dt in the viscous flow equation (5). 

In particular, we are primarily concerned with the effect of the moving phase boundary. Let V 
be the velocity of the phase boundary at x = x, . Then V = V,6(x  - x,)n since melting is in the 
direction normal to the interface x = x, at any time z. Setting V for U in (22) and substituting for 
au/at and aT/a t  in ( 5 )  and (l), then (16) and (18) become 

P 

and 

ln { pc, (g w - V - VTw + pc,u - V T w  + kV T -  V w  

for all admissible test functions v, w and W respectively. 
Introducing the semidiscrete finite element expansions for u, p ,  T and H,  , 

and vh = {(r#~,, O), (0, $ )} q = {x,} ,  wh = {i,ht} and i+h = ti into the integral statement (17), (23), 
(24), where { d j ,  X k ,  ti} are the finite element basis functions on the discretized domain, yields 
the Galerkin approximate statement of the coupled problem. Evaluating element contributions to 
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the integrals so obtained and accumulating, we obtain a non-linear semidiscrete coupled system 
of ordinary differential equations 

BTu= 0, 

dH 
dt M3- + g,(u, V, H) + A3 H= f3 

to be integrated with respect to time. 
In a given (small) time step At from t ,  to t,+ = t, + At we use the solution u("), ~ ( " 1 ,  P) at the 

beginning of the step to define V(t) from (3), and V in (27) is assumed constant through the step. 
Hence the convective adjustment term associated with the motion of the domain boundary is 
constant in a given time step, with value dependent upon V,, computed from the previous step. 
Differencing (27) implicitly with respect to time through the time step At,, then yields a coupled 
non-linear system of algebraic equations to be solved for the nodal solution vector (ur, uz, p, H). In 
the present numerical algorithm we first iteratively decouple the energy and momentum equa- 
tions in (27) by successive approximation of T and u respectively, with initial iterates given by the 
solution at the previous step. That is, through a given time step (t,, t,, 1) we integrate with the 
decoupling iteration for k = 0, 1, 2 . . . 

BTu= 0, (29) 
dT 
dt 

M, - + gZ(uc+'), V,, T) + A2T= f2, 

dH 
dt 

M3- + g3(u(li+'), V,, H) + A3 H =  f3. 

Successive approximation and Newton-Raphson iterations have been implemented for (28), 
(29) with frontal elimination of the resulting linear systems and also for the linear systems arising 
from (30) and (31). The number of iterations can be vaned according to the size of time step. In the 
numerical studies following, we use a backward Euler implicit scheme to interate (28), (30) and 
(31) with time step At related to the specified surface temperature T(r, 0, t) or flux q(r, 0, t ) .  The 
magnetic field calculation is also decoupled and the resulting algebraic system is solved using an 
element-by-element vectorized conjugate gradient algorithm.20 Note that in this study we have 
used a standard Galerkin formulation. Since we observed that convection is not negligible in weld 
pool flows, some caution must be exercised with regard to grid size to ensure that the cell 
Reynolds and cell Peclet values are sufficiently small for oscillations not to occur. An alternative 
is to add artificial or numerical dissipation (via upwinding). In the present case the flow develops 
strong convective rolls so (streamline) directional upwinding may be applicable but is probably 
still not appropriate. Our purpose in this study is to obtain a detailed accurate solution to better 
delineate layers and recirculation zones. With this in mind, and since the convective effects are of 
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reasonable magnitude, we use a standard Galerkin scheme on a sufficiently fine mesh and do not 
add dissipation. 

The eight-node serendipity element has been used in these calculations. In a previous numerical 
study2' we showed that this element produces good velocities but inaccurate pressure on coarse 
discretizations for driven cavity type flows. The poor pressure approximation is due to the corner 
singularity and the incompressibility constraint. Results on moderate and fine grids are good and 
can be improved further by regularizing the boundary data at the singular point. 

Note that this is only an approximate and simplified form of the continuously deforming finite 
element method in References 22 and 23. In the present method, only the nodes on the phase 
boundary move, other nodes remaining fixed. This implies that the elements adjacent to the phase 
boundary become increasingly elongated as time progresses. There are two main ways to 
circumvent this: (1) allow all nodes to move in the manner of the continuously deforming finite 
element method; (2) periodically redistribute the mesh (remesh). In the former approach the 
problem is solved for the solution and mesh co-ordinates simultaneously, thereby increasing the 
number of unknowns and size of the system significantly. Remeshing essentially uncouples the 
grid motion. To continue the solution we compute the change in mesh location over the time step 
and determine a mesh velocity V for use in (28H31). In the present analysis we have adopted a 
remesh strategy based on the procedures developed in Reference 24. The motion of the phase 
boundary determined by Van At is used to interpolate the motion of interior nodes and adjust the 
grid accordingly. 

NUMERICAL RESULTS 

To investigate the nature of the convective flow and relative influence of buoyancy and surface 
tension, we first consideked a fixed domain problem integrated to a steady state, i.e. we considered 
the problem for a molten pool held in a crucible with specified final surface temperature and melt 
temperature maintained at the crucible. The domain shape was chosen to approximate that 
obtained in experiments and used previously in finite difference computations in Reference 15. An 
eight-node quadratic C o  basis for the velocity and temperature with a bilinear C o  pressure basis is 
used in our extension of the implementation in Reference 11. 

The physical properties for molten steel in the weld pool problem are: coefficient of expansion 
/? = K-'; thermal conductivity k = 40 WmK-'; density p = 7200 kgmP3; heat capacity 
cp = 753 J kg-' K-'; kinematic viscosity v = 8.33 x lo-' m2s-l. The corresponding Prandtl 
number for the weld pool is 0.113. The temperature boundary condition at the surface in the 
following numerical experiments has been specified as 

~ ( r ,  0) = f(Tmax- Tmelt) c o ~  (nr/R) + i (Tmax+ Tmelt)r 

where Tmelt = 1600 K, R is the maximum radial distance, and the maximum temperature T,,, 
is known from experimental data.25v26 

Setting surface tension to zero, we first considered the flow fieid produced by buoyancy alone 
and obtained the velocity field in Figure 3. (Velocity vectors for the weld pool flow are scaled in 
the plots so that in each case the scaled maximum velocity is unity.) We find that the flow velocity 
generated by buoyancy is smaI1. The maximum velocity occurs at the surface and is approxi- 
mately 0.005 m s- '. Hence the problem is only mildly non-linear and solution was obtained in a 
few successive approximation iterations. It is clear that the contribution of buoyancy is negligible 
for the weld pool circulatory flows. An order of magnitude and perturbation analysis can also be 
constructed to arrive at this qualitative conclusion. The Lorentz body force J x pmH also 



WELD POOL ANALYSIS 72 1 

influences the velocity field. To examine this contribution we again set the surface tension to zero 
and also now omit the buoyancy force. The velocity field resulting for a magnetic field due to a 
current I = 100 A is shown in Figure 4. The Lorentz force causes an inwardly directed flow but 
the maximum velocity is only 002 ms-'. If the electric current is increased to 200 A, the velocity 
field is similar with a maximum velocity now of 0.063 m s- (see also Reference 27). 

Next we considered the surface tension driven problem at increasing Reynolds numbers Re. 
Rather than solve the steady problem with continuation in Re, we take the transient problem with 
the surface data incrementally increasing from zero to the desired value as indicated in the 
previous discussion of implementation. In the following calculations the horizontal component of 
the surface flow velocity was prescribed using y ( T )  and aT/ar at z = 0. The surface tension 
coefficient is assumed to vary linearly. The slope ay/aT used for each calculation is given in the 
figures. A successful solution on a coarse mesh of 100 elements (Figure 5) was obtained for 
moderate Re, but the method failed to converge at Re-1200 for this mesh. Local solution 
oscillations feed back into the non-linear terms of the equations, and the solution iterates diverge. 
On uniformly refining the mesh to 200 elements, a convergent solution was obtained, and a mesh 
of 450 elements produced essentially the same flow pattern (Figure 6). There is a strong 
circulatory flow at the extreme right of the domain and a flow reversal in the boundary layer 
adjacent to the free surface. Elsewhere in the flow field the velocities are small (although a 
streamline plot does indicate a mild secondary circulation). 

The associated temperature contours are shown in Figure 7 and are compared with the 
temperature contours for conduction in the absence of convection (which would also be close to 

Figure 3. Velocity field for flow in a fixed axisymmetric domain due to buoyancy forces; V-= 4.3 mms-', Pr = 0.11, 
Ra = 430 

Figure 4. Velocity in weld pool due to Lorentz alone with I = 100 A, V,,= 20mrns-' 



122 R. McLAY AND G. F. CAREY 

Figure 5. Coarse mesh solution for flow in a fixed axisymmetric domain from an applied quadratic surface velocity profile 
V,  = 4Vm,,r(R - r ) /R2 ,  Vm,,= 0.31 ms-' (Re = 1ooO) 

Figure 6. Surface driven flow for axisymmetric weld flow outwardly directed, quadratic profile V,,= 1.05 ms-' 

Figure 7. Temperature profiles: T varies from applied surface temperature to melt temperature at the interface 
Vm,,= 1.0 ms-'. Dotted lines are for conduction alone; T, = 1646 K, T, = 1832 K, AT = 46 K 

those for buoyancy alone since the convective velocity is so small in that instance). Note the large 
change in the profile closest to the melt boundary-in the strongly convective flow the fluid 
carries heat out along the surface layer and colder fluid in from the melt wall to the recirculation 
zone. This supports the argument that shallow welds may be produced due to these convective 
effects by outward driven flow from surface tension. 

As remarked in the introduction, the presence of impurities or certain operating conditions 
may produce inwardly directed flows. It is instructive to compare the preceding results with those 
obtained with the same surface velocity field directed inward. The associated convective flow 
pattern is shown in Figure 8. The convective pattern is much stronger and extends over a large 
part of the flow domain. The corresponding temperature contours are given in Figure 9 and 
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Figure 8. Inwardly driven flow (600 elements); V,,= 1 m s - *  

Figure 9. Temperature contours for inwardly directed flow (compare with Figure 7). Dotted contours are for 
conduction alone; TA = 1646 K, T, = 1832 K, AT = 46 K 

compared again with those for conduction. The hot surface fluid is carried inward and down 
through the centre, producing a thermal boundary layer centrally near the melt (crucible) surface 
of this fixed domain. Such flows will strongly enhance the formation of deep welds. 

In experimental studies it has been noted that the free surface of the weld pool may be 
depressed and that this may be related to the occurrence of ‘dry holes’ and other ‘faults’ in the 
weld. In the next series of numerical studies we compute approximate solutions for a fixed weld 
pool with a depressed surface. The shape of the depressed surface and pool have been prescribed 
in advance to approximate the shape considered in Reference 26. The domain and a represen- 
tative grid for the case of a 1 mm depression are indicated in Figure 10. Our purpose is to examine 
the influence of surface depression on the flow and heat transport. 

For a heated free surface with curvature, the shear due to surface tension depends on both the 
thermal gradient and the curvature. However, in the present case we prescribe the position of the 
top surface a priori. Hence the computation of the surface tangential shear force driving the flow 
depends only on the thermal gradient. This implies that the shear stress expression in (9) must be 
modified to account for the local orientation of the surface in the tangential direction 
5: T, = (ay/aT)(aT/ds)v - 6. The contribution to the integral statement (16) to include the free 
surface boundary condition now becomes 

Including this modification in the approximate problem and integrating, we obtain the approxi- 
mate velocity and temperature solutions. 
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Figure 10. Domain for weld pool with 1 mm depresion 

Figure 1 1 .  Velocity field for weld pool shape with I mm depression; V-= 1.4ms- l  (inward driven flow 
dy/dt=O.Sx lO-’Nm-’  K-’ 1 

As in the previous cases, a cosine ‘bump’ temperature variation is prescribed as data and scaled 
incrementally over time to the final temperature value. The velocity field solution is indicated in 
Figure 11 for the case of inward driven flow at time t = 0.4 s. Comparing with the flat surface case, 
we see that the main vortex is translated away from the centreline and is strongest at the ‘circle’ 
periphery. There is a relatively ‘quiet’ zone in the vortex interior and between the vortex and 
strong downflow at the centreline. A very small secondary flow occurs in the extreme right comer. 
This flow behaviour is associated with the temperature profiles in Figure 12. The calculation was 
repeated for a pool with a 2 mm depression, and similar behaviour of the flow fields is observed in 
Figures 13 and 14 at time t = 0.21 s. The size of the ‘quiet’ region at the extreme right is large and 
contains a small secondary cell. We notice in Figure 14 some irregularities in the temperature 
profiles near the vortex. These slight oscillations indicate that we are approaching the stability 
limit of the mesh for this calculation. Calculations attempted on a coarser grid become unstable 
and diverge as the vortex forms. Finally, in Figures 15 and 16 we show the approximate solution 
for the pool with a 1 mm surface depression and outward driven flow. A very tight vortex forms at 
the extreme corner by t = 0 4  s. There is a large, ‘quiet’ secondary recirculation cell with flow 
reversal occurring in a thin layer adjacent to the surface. 

A minor point concerning the depressed surface geometry and calculations is of note. Attempts 
to analyse the problem using two quadratic arcs in a Co fit to the surface were unsuccessful. The 
difficulty stems from the fact that this surface approximation is only Co; i.e. the surface slope was 
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Figure 12. Temperature ! contours for weld pool shape with 1 mm depression; TA = 1733 K, T, 
(inward driven flow dy/dt = 0.5 x lo3 Nm-' K-') 

= 2267 K, AT = 133 K 

Figure 13. Velocity field for weld pool shape with 2 mm depression; V-= 1.4 ms- ' (inward driven flow 
dy/dt = 0.5 x Nm-'  K-' 1 

Figure 14. Temperature field for weld pool shape with 2 mm depression; TA = 1733 K, TE = 2267 K, AT = 133 K 
(inward driven flow dy/dt = 0.5 x N m- ' K- 1 
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Figure IS. Velocity field for fixed weld pool with 1 mm depression; V,,,,,= 1.4 ms-' (outward driven flow 
dy/dt = 0 5 6 x  I O - ' N m - ' K - '  ) 

Figire 16. Temperature field for fixed weld pool with 1 mm depression; T A  = 1733 K, T, = 2267 K, AT = 133 K 
(outward driven flow dg/dt = 0.56 x 10- N m -  K ) 

continuous and piecewise smooth but had a small discontinuity at the 'knot'. In computations 
this discontinuity causes an interaction between the boundary condition of zero normal flow and 
the shear resulting from surface tension. The usual implementation for zero normal flow is to 
penalize. However, the discontinuity in slope makes the definition of the normal direction non- 
unique. Hence penalty contributions influence both normal and tangential directions, thereby 
constraining the node to have zero velocity. To circumvent this difficulty, we enforced continuity 
of the slope at this knot for the piecewise quadratics (while preserving the fluid volume of the 
depressed pool). 

Next we consider the moving boundary problem and take as initial data the solution for the 
fixed weld pool at steady state with inward driven flow. The latent heat condition is now 
introduced to determine the melt boundary velocity, and the shape of the weld pool plotted at a 
later time in Figure 17. This is a very demanding test case since the initial data have a strong 
thermal boundary layer and the phase boundary moves initially with a large velocity V. After a 
short duration, however, as the domain grows, the temperature gradients become less pro- 
nounced and growth of the domain slows. The general behaviour of the fluid flow pattern and 
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Figure 17. Weld pool mesh after allowing the boundary to melt using velocity and temperature profiles from Figures 8 
and 9 as initial data 

Figure 18. Weld pool mesh after remeshing 

temperature field is similar to that shown in Figures 8 and 9. In this case (inwardly directed flow) 
the weld pool growth is more pronounced toward the centre line because of the larger heat flux 
there. As indicated previously, after sufficient time the elements adjacent to the phase boundary 
are elongated. The domain is automatically remeshed as shown in Figure 18. 

There are several sensitive issues that arise in the moving mesh and remeshing algorithm. First, 
the melt boundary should move in accordance with the Stefan condition (3), i.e. the normal to the 
phase boundary defines the boundary motion. The extreme nodes on the melt boundary also lie 
on the centreline r = 0 and the surface z = 0 respectively. Hence these nodes must move with the 
free surface yet still satisfy these additional requirements. Other nodes on the centreline and free 
surface should move along these directions proportionally as the extreme nodes move with the 
phase boundary. These conditions can be readily included as constraints on the boundary node 
motion for the remeshing algorithm. 

A more serious problem arises for nodes on the moving phase boundary. In the analysis 
presented here, eight-node isoparametric quadrilaterals are employed and the phase boundary is 
approximated as a Co piecewise quadratic curve, i.e. the tangential and normal derivatives are 
discontinuous at the inter-element nodes. This implies that the normal direction is not uniquely 
defined at the inter-element nodes. In the calculations the normal directions are averaged. In a 
different context, other mass-conserving projections have been introduced for viscous flow 
problems,”. *’ but these are not appropriate here since the motion of the phase boundary is 
primarily governed by heat transfer, and the momentum equations play a secondary role. Despite 
averaging, the initially smooth phase boundary becomes ‘rippled’ due to local inaccuracy in the 
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velocity (flux) integration and other approximation errors. Accordingly, we introduce a smooth- 
ing projection at the remeshing step to filter out high-frequency oscillations in the phase 
boundary. 

A low-order Fourier expansion is introduced to fit the melt boundary: 
N N 

x(s) = hj sin kjs ,  y(s)  = ,I aj cos kjs 
j=  1 j=  1 

with j odd. Here s is the arc length along the melt boundary, and kj=jlc/2L with L the length of 
the melt boundary. In the previous example the boundary motion was computed for a few steps 
using a low value of latent heat to exaggerate the motion. The problem is now computed with a 
surface heat flux boundary condition q = (Q/nrj)  exp( - r 2 / r f )  and latent heat 1.78 x lo9 J m-3. 
The melt boundary is again held fixed from t = 0 to t = 0.1, so the flow and temperature 
distributions are similar to those in Figure 6 and 7 in the liquid region. An initial weld pool of the 
same shape as in the preceding studies is assumed with the same initial condition and surface 
boundary conditions. At the ‘remote’ bottom z = - d  the heat transfer coefficient is 1 W m-’ K -  
and in the far field ( r = R )  the temperature is taken as 300 K. The velocity and temperature 
distributions are indicated in Figures 19 and 20 at time t=O12 as in the previous calculation. As 
anticipated, the melt boundary does not move as far as when the solid is nonconducting. The 
depth is 1.43 mm (159% of the original depth). Here heat is lost by conduction through the solid, 
so the flux jump is smaller than before and the velocity of the melt boundary reduced accordingly. 

CONCLUDING REMARKS 

The problem of coupled viscous fiow and heat transfer in a weld pool is analysed using a mixed 
finite element method for the primitive variable formulation. Important features are the surfa.ce 
tension driven flow (Marangoni effect) and the moving phase boundary. Results computed using 
good grid resolution on a CRAY computer reveal the detailed structure of the flow circulation 
regions and layers. The results give much more detail and provide a more comprehensive 
treatment than those computed previously using finite difference methods and the stream- 
function-vorticity formulation for fixed weld pool shapes.’ ’ 

Figure 19. Velocity vectors for a weld pool at t = 0 1 2 %  Q = 1500 W, r, = 4m1h V,= 1.25 ms-’ 
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Figure 20. Temperature contours for a weld pool at t = 012s ,  Q = 1500 W, r4 = 4mm; TA = 552 K, TI = 1948K, 
A T = 8 2 K  
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